Jump to content


ÄŒuju li se basovi u sobi?


beatgoeson

Recommended Posts

Prvo su bile izriÄite tvrdnje, sada su malo manje... U redu je ovaj praktiÄni pristup, ali je trebalo odmah reći na Å¡ta se misli. Recimo ovako "ÄŒuje se to, ali uz dosta problema". Možda 25 Hz i jeste -35 dB, ali već 30 Hz bude ok. Promenom mesta, stvar će se promeniti. Sa dva suba, biće bolje. Ako ljudi daju hrpe novaca da bi "stage" bio malo viÅ¡e napred, naći će se neÅ¡to i za sub, uz sigurno primetno impresivnije basove, kakva god bila soba. Hi-Fi je u detaljima... :D

Niko nije poricao probleme. Po stoti put - da, ima refleksija, potiranja, stojećih talasa... Ali, subvuferi se prave i koriste, ljudi bi, verovatno, već primetili da to niÄemu ne koristi. Evo, Cheda će biti u prilici da nam, za par dana, iznese svoje impresije. Svi elementi su tu: Mala soba, dobar sub, ima merne instrumente (i uÅ¡i). ;)

Da, samo ne znam da li je njegov cd u stanju da reprodukuje kako treba zadatih 18Hz ako mu je frekventni opseg od 20Hz-20Khz :D

Eto nama nove teme, hehe ;)

Upravo tako beat, cuje se ali uz mnogo problema i zavisno od sobe ispada kao da se ne cuje,a takodje se ne cuje isto u svim tackama, to je valjda sada jasno, vec treba naci neku vrstu sweet spota gde se ti talasi manje potiru. Zato sam uporno insistirao da se meri odziv na svim delovima sobe jer gotovo sigurno sa strane zida skoro nikad necete cuti onih pravih 20-25Hz u maloj sobi...

Nebitno sada, drago mi je da su oba misljenja prihvatljiva i da napokon zavrsimo sa ovim isterivanjima vestica :)

Beat, da ne sirimo dalje pogledaj sta je napisao BokiToki pre nas kao i Guzina, tu je sad jasnije o cemu se mislilo...

Chedo, daj samo postavi sliku sobe, da vidimo gde se nalazi sub i mesto gde merish taj peak, pa ce biti valjda jasnije josh neke stvari...

Pozz,

Borjan

Link to comment
Share on other sites

  • Replies 145
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

Ja sam svojim usima vec dokazao sta se cuje a sta ne, i koliko glasno.... Pa ni ne ocekujem da cujem 20Hz na istom nivou kao 1kHz... niti bi mi tako nesto trebalo u zivotu ;) Ali poenta je da mogu da cujem. a prve tvrdnje su bile o nepostojanju bilo kakve mogucnosti da se isto desi...

A merenja koja sam sinoc radio (preliminarno) pokazuju jasan odziv vec od 20Hz, naravno na nizem nivou nego na 100Hz, ali opet tu je.... A ja sam samo tu tvrdnju i pobijao...

Vazno da smo dosli do nekogo konsenzusa, i da stvari nisu vise tako iskljucive ( crno/bele i nelogicne)...

Boki ti jesi rekao slicnu stvar, ako svedemo na rezultate, ali nisu rekao razlog zasto... Tako da je cela prica bila dosta nerealna... Nepostojeci pojam neformiranog talasa je sada postao nedostatak rezonantne strukture na datoj talasnoj duzini...a to pricu stavlja u potpuno drugaciji okvir.. Iako krajnji rezultat deluje slicno...

Nadam se da cu uskoro imati kompletna merenja, cisto da zaokruzimo celu pricu...

A mogao bih i da izmerim napolju na krovu, jedino sto sam u centru pa je background buka ogromna... videcemo...

P.S. Sada vidim nove postove... necu da menjam, sve ovo sm pisao pre citanja prethodna dva posta

P.P.S ima slika sub-a i polozaja u samogradnji - tema se zove ELF sub II - zvucnika - ili tako nesto... Na prvoj strani je ako se ne varam

Poz

Link to comment
Share on other sites

Ja sam svojim usima vec dokazao sta se cuje a sta ne, i koliko glasno.... Pa ni ne ocekujem da cujem 20Hz na istom nivou kao 1kHz... niti bi mi tako nesto trebalo u zivotu ;) Ali poenta je da mogu da cujem. a prve tvrdnje su bile o nepostojanju bilo kakve mogucnosti da se isto desi...

A merenja koja sam sinoc radio (preliminarno) pokazuju jasan odziv vec od 20Hz, naravno na nizem nivou nego na 100Hz, ali opet tu je.... A ja sam samo tu tvrdnju i pobijao...

Vazno da smo dosli do nekogo konsenzusa, i da stvari nisu vise tako iskljucive ( crno/bele i nelogicne)...

Boki ti jesi rekao slicnu stvar, ako svedemo na rezultate, ali nisu rekao razlog zasto... Tako da je cela prica bila dosta nerealna... Nepostojeci pojam neformiranog talasa je sada postao nedostatak rezonantne strukture na datoj talasnoj duzini...a to pricu stavlja u potpuno drugaciji okvir.. Iako krajnji rezultat deluje slicno...

Nadam se da cu uskoro imati kompletna merenja, cisto da zaokruzimo celu pricu...

A mogao bih i da izmerim napolju na krovu, jedino sto sam u centru pa je background buka ogromna... videcemo...

P.S. Sada vidim nove postove... necu da menjam, sve ovo sm pisao pre citanja prethodna dva posta

P.P.S ima slika sub-a i polozaja u samogradnji - tema se zove ELF sub II - zvucnika - ili tako nesto... Na prvoj strani je ako se ne varam

Poz

MA druze,finally :D;):)

Link to comment
Share on other sites

ne znam da li da bacam novu filozofsko naucnu zisku u ovaj rapslamsali plamen od topica?

a sta cemo sa subjektivnim dozivljajem razlicitih frekvencija koje se objektivno emituju sa istim zvucnim pritiskom.

mala soba, zvucnik emituje 20hz - 20khz glasnocom od 65 db.

sta cete od toga cuti i kako?

Link to comment
Share on other sites

Dobra tema! Ako sam ja dobro shvatio, beat je bio dosledan u svojoj tvrdnji da se zvuk niske frekvencije (20-35 Hz) moze cuti direktno iz izvora i time indirektno naterao chedu da provede noci u konstruisanju softvera i hardvera kojim ce proveriti iznesene tvrdnje. Na kraju je cheda empirijski dokazao tvrdnje da se zvuk moze cuti u manjoj sobi ali tu su i dalje prisutne refleksije te ne znamo da li cujemo direktno iz izvora ili cujemo te refleksije. Ostaje ninjin test sa livadom da bi se dokazala beatova prvobitna tvrdnja.

A sta je sa zvukom iz slusalica koji je beat pominjao? Je l' to zaboravljeno ili sam ja nesto propustio?

Link to comment
Share on other sites

Dobra tema! Ako sam ja dobro shvatio, beat je bio dosledan u svojoj tvrdnji da se zvuk niske frekvencije (20-35 Hz) moze cuti direktno iz izvora i time indirektno naterao chedu da provede noci u konstruisanju softvera i hardvera kojim ce proveriti iznesene tvrdnje. Na kraju je cheda empirijski dokazao tvrdnje da se zvuk moze cuti u manjoj sobi ali tu su i dalje prisutne refleksije te ne znamo da li cujemo direktno iz izvora ili cujemo te refleksije. Ostaje ninjin test sa livadom da bi se dokazala beatova prvobitna tvrdnja.

A sta je sa zvukom iz slusalica koji je beat pominjao? Je l' to zaboravljeno ili sam ja nesto propustio?

Au, brate al ga ti pretera :thumbsup2 Mislim, svaka cast Cedi, nema sumnje,a ali to sa konstruisanjem softvera i hardvera ga bash pretera :order

Nemojmo sad da pocinjemo temu o mikrofonima i spravicama za merenje i adekvatnim uslovima jer bi onda mnoga Cedina merenja pala u vodu :D Salu na stranu,O tome imam preko 300 strana...

Nista se nije promenilo, basovi se emituju ali vecina ljudi ih objektivno nece cuti kao sto ni g-din Ludwig u svojoj 60+ godini ne moze da cuje preko 13Khz ,a od 10Hkz mu se cini da se nesto menja, tako bar pishe na njegovom sajtu.

Link to comment
Share on other sites

Dakle,prvo dolazi do formiranja direktnog talasa za kojeg smo usvojili da je jaci od reflektovanog,ali usled losije sobe, manjih dimenzija, reflektovani talas se snazno i brzo visestruko odbija,poprima rezonance sobe i sudara sa sledecim direktnim talasom, Zavisno da li su u fazi ili kontrafazi, oni se sabiraju ili oduzimaju. Tu se jedino NE SLAZEM sa g-dinom Ludwigom jer on tvrdi,bar meni napismeno, da su talasi uvek u fazi, kao i njihove refleksije.

But at even lower frequencies the reflections become more and more in-phase. They are almost perfectly in phase for a very long wavelength
Link to comment
Share on other sites

Dakle,prvo dolazi do formiranja direktnog talasa za kojeg smo usvojili da je jaci od reflektovanog,ali usled losije sobe, manjih dimenzija, reflektovani talas se snazno i brzo visestruko odbija,poprima rezonance sobe i sudara sa sledecim direktnim talasom, Zavisno da li su u fazi ili kontrafazi, oni se sabiraju ili oduzimaju. Tu se jedino NE SLAZEM sa g-dinom Ludwigom jer on tvrdi,bar meni napismeno, da su talasi uvek u fazi, kao i njihove refleksije.

Sve ovo prolazi osim boldovanog... na tim najnizim frekvencijama o kojima je rec u celoj temi, ne postoji rezonanca sobe koja bi na njih delovala.. Rezonance sobe deluju na sve talase cija je 1/2 duzine kraca od najvece mere sobe..

U tome je poenta price na svih ovih 6 strana, da rezonance sobe ne mogu ppojacati talase te duzine, pa je stoga slabljenje usled refleksija vece nego kod kracih talasa...

A za fazu namerno nisam hteo nista da pricam, jer smo i ovako ubacili previse varijabli u igru.. kako se nesto dogovorimo tako se pojavi nesto novo i ajmo jovo nanovo :thumbsup2

Ovo sto g. Ludwig kaze za fazu je tacno u slucaju perpedikularne refleksije (kada talas udari pod pravim uglom, njegova refleksija ima identicnu fazu kao orginalni talas). I zaista analizom mogucih uglova i sa malo statistike, ne bi me cudilo kada bi se doslo do zakljucka da sve refleksije jednog talasa "teze istoj fazi"... Refleksije nemaju bas veliki uticaj na fazu talasa, kao sto imaju npr prepreke koje "usporavaju" talas (promena faze je pojednostavljeno gledano, kasnjenje talasa za vremenski period koji je MOD vremenskog trajanja amplitude orginalnog talasa)

Takodje je negde u temi receno kako se blizu zidova slabije cuju basevi - to je potpuno netacno jer se blizu zidova amplitude ubedljivo najvece jer je u toj zoni, blizu tvrde povrsine faza orig i refl talasa ista... To je dobro poznat fenomen koji se koristi u npr "pressure zone" mikrofonima...

A sto se merenja tice, slazem se sa borjanom, daleko je to od profi upotrebe... Mada ako je covek svestan sta moze a sta ne moze izmeriti u takvim uslovima, i uzme to sve u obzir pri tumacenju rezultata, i ne trazi apsolutne istine :order, onda se korist ne moze poreci... meni su merenja najrelevantnija kada merim promenu, a ne apsolutnu vredonost... jer se onda greske potiru (kao nasi talasi :D )

Najvise bih voleo da imam gluvu sobu i opremu od 10000000 strane valute, ali sta ces :D

Poz

Link to comment
Share on other sites

Sve ovo prolazi osim boldovanog... na tim najnizim frekvencijama o kojima je rec u celoj temi, ne postoji rezonanca sobe koja bi na njih delovala.. Rezonance sobe deluju na sve talase cija je 1/2 duzine kraca od najvece mere sobe..

U tome je poenta price na svih ovih 6 strana, da rezonance sobe ne mogu ppojacati talase te duzine, pa je stoga slabljenje usled refleksija vece nego kod kracih talasa...

A za fazu namerno nisam hteo nista da pricam, jer smo i ovako ubacili previse varijabli u igru.. kako se nesto dogovorimo tako se pojavi nesto novo i ajmo jovo nanovo :order

Ovo sto g. Ludwig kaze za fazu je tacno u slucaju perpedikularne refleksije (kada talas udari pod pravim uglom, njegova refleksija ima identicnu fazu kao orginalni talas). I zaista analizom mogucih uglova i sa malo statistike, ne bi me cudilo kada bi se doslo do zakljucka da sve refleksije jednog talasa "teze istoj fazi"... Refleksije nemaju bas veliki uticaj na fazu talasa, kao sto imaju npr prepreke koje "usporavaju" talas (promena faze je pojednostavljeno gledano, kasnjenje talasa za vremenski period koji je MOD vremenskog trajanja amplitude orginalnog talasa)

Takodje je negde u temi receno kako se blizu zidova slabije cuju basevi - to je potpuno netacno jer se blizu zidova amplitude ubedljivo najvece jer je u toj zoni, blizu tvrde povrsine faza orig i refl talasa ista... To je dobro poznat fenomen koji se koristi u npr "pressure zone" mikrofonima...

A sto se merenja tice, slazem se sa borjanom, daleko je to od profi upotrebe... Mada ako je covek svestan sta moze a sta ne moze izmeriti u takvim uslovima, i uzme to sve u obzir pri tumacenju rezultata, i ne trazi apsolutne istine :D, onda se korist ne moze poreci... meni su merenja najrelevantnija kada merim promenu, a ne apsolutnu vredonost... jer se onda greske potiru (kao nasi talasi :D )

Najvise bih voleo da imam gluvu sobu i opremu od 10000000 strane valute, ali sta ces :D

Poz

Chedo, nesto za tebe :thumbsup2

Room Acoustics TreatmentsPhantom Acoustics Shadow active low-frequency acoustic control

By Robert Harley • December, 1989 The acoustic environment for music reproduction is easily the most overlooked source of sonic degradation. Many fine playback systems are compromised by room-induced anomalies that severely color the reproduced sound. When we live in a world of directional wire, high-end AC power cords, and $4000 CD transports, paying attention to the listening room's contribution to the musical experience takes on greater urgency.

Audiophilia's underestimation of a room's effect on musical fidelity can be traced to two causes: 1) the science of acoustics is quite mathematical and arcane, and 2) acoustic theory has not been sufficiently popularized to translate into practical information for the audiophile (footnote 1). Although this situation is improving, largely through the work of Peter D'Antonio of RPG Diffusors and Arthur Noxon of Acoustic Sciences Corporation (maker of Tube Traps), we still have a long way to go in improving the listening environment. The listening room should be considered another link in the playback chain, just as any other component. It is here that the acoustic energy produced by the loudspeakers is coupled to our ears.

Background

Before describing the technical aspects and musical effects of the Shadow, let's review the behavior of air in a room.

Any volume of enclosed air will resonate at its natural frequency, determined by the dimensions of the enclosure. The classic example is a bottle that produces a tone when you blow across its opening. The pitch of the tone varies according to the amount of air above the liquid in the bottle (the size of the enclosure). Although the motion of air across the bottle opening remains the same, a different pitch is created because a different resonant frequency within the bottle is excited.

This is also true for the air in a listening room excited by a loudspeaker. Large response peaks are created when the room's natural resonant frequencies (called "modes") are excited. The result is a peak in the frequency response, sometimes as great as 20dB. A room's fundamental resonant frequency can be calculated by dividing the speed of sound in feet per second (1130) by twice the length. For example, a room 21' long will have a fundamental resonance at 27Hz, which represents a wavelength of 42'. Note that the resonance occurs where the room length equals half the acoustic wavelength.

In addition to this fundamental resonance, multiples of the fundamental are also excited at, using our 21' example, 54Hz, 81Hz, 108Hz, 135Hz (1, 1½, 2, 2½ wavelengths respectively), and so on. Further compounding the problem, each room dimension (length, width, height) creates its own resonant series.

If that weren't enough, reflections from the walls interact with the direct sound, creating standing waves. In areas of the room where the reflected wave's compression phase (increased air pressure) meets the direct wave's compression phase, the waves combine constructively, creating a huge increase in level. When the reflected wave's compression meets the direct wave's rarefaction (decreased air pressure), nearly complete cancellation can occur, resulting in almost no sound. You can easily demonstrate this by playing a 60Hz tone on a test CD and walking around the room. The volume will appear to increase and decrease in different areas. If your favorite listening chair happens to be in an area of constructive interference at a certain frequency (reflected compression meeting direct compression), the resultant increased level at that frequency will cause bass to take on a "one-note" characteristic.

A classic problem in typical listening rooms is high-frequency absorption provided by carpets, drapes, and furniture, without low-frequency absorbers to balance this high-frequency softness. Carpets and drapes provide almost no absorption below 300Hz, where most room-induced problems occur. Consequently, high frequencies are damped, while low frequencies run uncontrolled through the room. The result is a short reverberation time at high frequencies and long reverberation time at low frequencies. This condition, along with room resonance modes and standing waves, team up to make bass reproduction tubby, sluggish, and lacking articulation and detail.

Link to comment
Share on other sites

Drugi izvor...Ima sta da se procita :thumbsup2

You're probably familiar with the situation where the band, sitting back on the couch, is hearing plenty of bass while at the same time the engineer, sitting right at the console in the "sweet spot," isn't sure if he's hearing the big speakers or the Auratones. Or maybe just the opposite is true (sometimes the case in larger control rooms). Why this discrepancy in bass from one part of a room to another? The answer is: the room itself. Sound waves simply behave differently in a room than they do in a free field (i.e., outdoors). It is impossible for every bass frequency to be heard at the same volume at every point in a room. This is just a reality of the physics of sound, and understanding this is crucial to mixing bass properly and to building a good-sounding control room.

THE BOUNDARY EFFECT

One way of improving a room's bass response is to use certain room ratios (of height to width to depth), thus tuning the room's modal response. Although good ratios are very important, many instances of problematic bass are caused by the more general wave cancellation: When sound waves hit a wall, they reverse direction and recombine with the waves coming from the source. Room boundary-related wave cancellation, or the boundary effect, affects all sound waves, at all frequencies - not just frequencies that are mathematically related to the room dimensions. This phenomenon of sound waves mixing with their own reflections causes pressure build-ups (loudness) and cancellations (softness) at predictable distances from the wall, given a specific frequency.

Let's take a moment to examine what happens when a speaker vibrates at 40 Hz. in a room. Forty times per second, the speaker cone thrusts forward, causing a compression "peak" to travel across the room at the speed of sound. In between each such forward peak, the speaker cone travels backward, creating rarefaction "valleys." The distance between one compression peak and the next is one cycle, hence 40 peaks in a second equals 40 cycles per second, or 40 Hz. Since sound travels through the air at a speed of approximately 1130 feet per second, and 40 waves are going past any given point in a second, each wave cycle will be 28 feet apart (1130 divided by 40 equals approximately 28). The distance between a peak and a valley will be half that: 14 feet. In a free field with no boundaries, you could stand at any reasonable distance from the speaker and hear flat, even bass, because the alternating peaks and valleys just keep going right past you, no matter where you stand.

In a room, on the other hand, a wave will hit a wall or other surface, reverse direction, and then this reflected wave will mix with the source wave coming from the speakers. Inside, as opposed to outside, speakers sound louder due to these reflections, as volume is not lost to "outer space." The downside is that in some places in the room, for a given note, compression meets compression, amplifying that frequency (constructive interference), and in other parts of the room, compression meets rarefaction, canceling at that frequency (destructive interference).

The volume of any given bass note is completely dependent upon where you are in the room; conversely, the amount of bass you perceive at any given point in the room is dependent upon what note is being played. CATCH A WAVE

Let's continue with the example of a 40 Hz. wave. In a medium-size control room, 19 feet deep, a sound wave's compression peak will hit the back wall, reverse direction, and combine with the next rarefaction valley at one quarter of its wavelength, or seven feet from the wall in the case of 40 Hz. The rarefaction valley is one half of a wavelength, or 14 feet, behind the compression peak. Thus, after hitting the wall, the compression peak and the rarefaction valley, moving toward each other at equal speed, will meet at a quarter of the wavelength from the wall, or approximately seven feet. Figure 1 at left shows the 40 Hz. wave hitting the wall at five different phases of the wave form. Note that no matter what phase of the wave is hitting the boundary, there is always a cancellation at the 1/4 wavelength point.

The same is true at the 3/4 wavelength point, while at the half wavelength point, constructive interference occurs, causing the note to sound louder than it should. So, someone sitting seven feet from the rear wall is in the null point for 40 Hz. If the song is in the key of E, this is a serious problem, since low E on the bass is approximately 41 Hz. (See Figure 2.) And for certain types of kick drum sounds, the lack of 40 Hz. could truly cause one to confuse the mains with the smaller speakers. At the same time, someone sitting one foot from the rear wall would be hearing something completely different, because they would be at the null point for around 280 Hz. (a shorter wavelength), yet would be hearing a boost at 40 Hz. Top

Link to comment
Share on other sites

Dalje...

Thank about it. If we have a twenty-foot long living room, and a loudspeaker at one end of it plays a 20 Hz. sine wave (56.5 feet long), that wave will go the length of the room, reflect back, and then reflect back again about 3/4s of the way before the next wavefront in that 20 Hz. wavetrain is generated. It is intuitively obvious that the room is not large enough to allow the wave to fully propagate without interference. No such wave can be free of significant constructive and destructive interference in that room.

This characteristic of low frequencies, that their wavelengths are larger than the dimensions of the rooms they are being performed in is, in fact, a problem.

Diffraction

The next issue with long waves is that they tend to diffract (bend) around most objects in the room. The ability of a wave to diffract around an object is dependent on the relative sizes/lengths of the wave and the object. Small objects tend to be transparent in the face of long wavelengths, and vice versa. So, a 50 Hz. wave (22 feet long) will tend to diffract around any object smaller than about, well, 22 feet, which is to say, it will diffract around any object in a typical room except the walls. It will not reflect off the console (unless you have a truly BIIIIG Neve), nor the light fixtures, nor the RPG diffusers on the wall. Those things are irrelevant to its progress. It is only reflected by the boundaries of the enclosure.

Absorption/Reflection

This brings up the next issue about the long wavelengths. Low frequencies can be absorbed by a wall by passing through it via diffraction (i.e. escaping through fissures, holes, and small air gaps), or by causing the wall to flex (and thereby converting sound energy to heat generated by the flexing motion). Most residential building techniques involve wall construction that doesn’t reflect low frequency energy all that well. Concrete, stone, or very massive solid particle-board construction will tend to contain low frequencies and cause them to reflect back into the room. Other more typical building materials, like sheet-rock and windows, tend to at least partially absorb and pass low frequencies.

Nodes and Antinodes/Pressure vs. Velocity

When boundaries are involved in this, some interesting things happen. The boundary wall becomes what is known as a node. As the wavefront approaches the wall, the amounts of molecular motion become smaller and smaller, while the pressure differences become greater and greater. This is because the wall resists the motion of the air molecules. As the wave travels away from the wall, the pressure variation becomes less and less while the molecule motion becomes greater and greater. The point where the molecule motion is greatest, and pressure variation the least, is called the antinode.

Now, along with the molecule motion being the greatest at the antinode, by the same token, the velocity of the molecules is greatest as well, while at the node, the velocity of the molecules approaches zero.

This is important to know because sound absorption by friction works best where the molecule velocity is greatest, and it works worst where velocity is least. Interesting, eh? You wanna absorb a sound wave? Don’t bother trying to damp the node (i.e. the wall), but instead put some frictional material in its antinode. That’ll stuff it every time!

The Quarter Wavelength Rule

This leads to the quarter-wavelength rule. If a wall is a node, then the nearest other node at any frequency will be 1/2 wavelength away from the wall (trust me on this, because I don’t want to write a whole other article about standing waves and resonance right now). Given that this is so, and it is, then the antinode is midway between those two points, or one-quarter of the wavelength away from the wall, for any given frequency. So, if you want to filter out, say, 60 Hz., you can do a dandy job by finding the wavelength of 60 Hz. (about 18 feet), divide it by four (about 4’ 6â€), and hanging a thin layer of frictional material (like fiberglass) at that distance from the wall(s), and floor and ceiling as well if you’re really serious about nuking 60 Hz. If you want to filter out all frequencies above 60 Hz., you can hang many such layers, or simply install a thick soft fuzzy boundary layer 4 1/2 feet thick! It’ll work wonders! It’ll also be expensive (have you priced 4.5’ layers of fiberglass lately? How about Sonex?)!

Link to comment
Share on other sites

Necu se baviti tehnikalijama kao u predjasnjim postovima, samo cu reci da kolicina i frekvencija basova u sobi (ispred doticnih naravno) moze znatno varirati u zavisnosti od vise faktora kao sto su tip zvucnika, vrsta amplifikacije, geometrija i akustika sobe, polozaj mesta za slusanje itd..

Nije retka pojava da su na primer cak i kompresione kutije zavisne od polozaja u odnosu na zid iza a da ne govorim za bas-refleks konstrukciju. Sta se na primer desava kad se npr. poliuretanskom penom zatvore bas-refleks portovi cime se narusava Q faktor samih kitija i basovi vise ne sviraju u kontrafazi? Pa morace da emituju basove najvise sa prednja strane drajvera a sada koje se frekvencije cuju i na kojoj razdaljini individualna je stvar. Sve u svemu, nema striktnih pravila.

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...